Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5535, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448547

RESUMO

New coumarin derivatives were designed using a 2-(2-oxo-2H-chromen-4-yl)acetic acid scaffold conjugated with amino acid esters or tyramine. The anti-tyrosinase and anti-lipid peroxidation activities of the synthesized compounds were investigated. Coumarin derivatives 7,9, 11-13, 15-18 showed strong anti-lipid peroxidation activity. Compound 13 exhibited uncompetitive tyrosinase inhibitory activity with an IC50 value of 68.86 µM. Compound 14 (% activity = 123.41) showed stronger tyrosinase activating activity than 8-methoxypsolaren (8-MOP, % activity = 109.46). In silico studies revealed different poses between the inhibitors and activators near the tyrosinase catalytic site. Compounds 13 (25-50 µM) and 14 (25-100 µM) did not show cytotoxicity against B16F10 cells. In contrast to the tyrosinase inhibition assay, compound 13 (50 µM) suppressed melanogenesis in B16F10 cells with two times higher potency than KA (100 µM). Compound 14 at 100 µM showed melanogenesis enhancement in B16F10 cells in a dose-dependent manner, however, inferior to the 8-MOP. Based on the findings, compound 13 and 14 offer potential for development as skin-lightening agents and vitiligo therapy agents, respectively.


Assuntos
60451 , Monofenol Mono-Oxigenase , Antioxidantes/farmacologia , Metoxaleno , Cumarínicos/farmacologia
2.
Sci Rep ; 14(1): 3639, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351065

RESUMO

The prevalence of HIV-1 infection continues to pose a significant global public health issue, highlighting the need for antiretroviral drugs that target viral proteins to reduce viral replication. One such target is HIV-1 protease (PR), responsible for cleaving viral polyproteins, leading to the maturation of viral proteins. While darunavir (DRV) is a potent HIV-1 PR inhibitor, drug resistance can arise due to mutations in HIV-1 PR. To address this issue, we developed a novel approach using the fragment molecular orbital (FMO) method and structure-based drug design to create DRV analogs. Using combinatorial programming, we generated novel analogs freely accessible via an on-the-cloud mode implemented in Google Colab, Combined Analog generator Tool (CAT). The designed analogs underwent cascade screening through molecular docking with HIV-1 PR wild-type and major mutations at the active site. Molecular dynamics (MD) simulations confirmed the assess ligand binding and susceptibility of screened designed analogs. Our findings indicate that the three designed analogs guided by FMO, 19-0-14-3, 19-8-10-0, and 19-8-14-3, are superior to DRV and have the potential to serve as efficient PR inhibitors. These findings demonstrate the effectiveness of our approach and its potential to be used in further studies for developing new antiretroviral drugs.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Darunavir/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química , HIV-1/genética , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Proteínas Virais/genética , Protease de HIV/metabolismo , Mutação , Farmacorresistência Viral/genética
4.
Mol Biotechnol ; 66(4): 582-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374320

RESUMO

We utilized molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) free energy calculations to investigate the specificity of two oligonucleotide probes, namely probe B and probe D, in detecting single-stranded DNA (ssDNA) within three bacteria families: Enterobacteriaceae, Pasteurellaceae, and Vibrionaceae. Due to the limited understanding of molecular mechanisms in the previous research, we have extended the discussion to focus specifically on investigating the binding process of bacteria-probe DNA duplexes, with an emphasis on analyzing the binding free energy. The role of electrostatic contributions in the specificity between the oligonucleotide probes and the bacterial ssDNAs was investigated and found to be crucial. Our calculations yielded results that were highly consistent with the experimental data. Through our study, we have successfully exhibited the benefits of utilizing in-silico approaches as a powerful virtual-screening tool, particularly in research areas that demand a thorough comprehension of molecular interactions.


Assuntos
DNA de Cadeia Simples , Simulação de Dinâmica Molecular , Sondas de Oligonucleotídeos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/química , Sondas de Oligonucleotídeos/genética , Sondas de Oligonucleotídeos/química , DNA Bacteriano/genética , Eletricidade Estática , Termodinâmica , Conformação de Ácido Nucleico
5.
RSC Adv ; 13(44): 30733-30742, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37869389

RESUMO

The conventional medium chain chlorinated paraffin (MCCP) and zinc dialkyl dithiophosphate (ZDDP) additives have greatly enhanced the extreme pressure (EP) and anti-wear (AW) performance of the metalworking fluids. However, chlorine- and zinc-containing additives are restricted in use due to eco-toxicity issue. Herein, ashless and non-corrosive dimercaptobenzothiadiazole derivatives, namely bis-2,5-benzylsulfanyl-[1,3,4]thiadiazole (BBST) and bis-2,5-octylsulfanyl-[1,3,4]thiadiazole (BOST) consist of three sulfur atoms have been synthesized and evaluated. The performance of BBST shows a weld load (PD) of 3089 N and AW value of 5 mm2, which represents an improvement of 3.1 and 7.4 folds over naphthenic base oil (NBO). In addition, BBST also outperformed BOST, MCCP, and ZDDP in terms of its weld load and AW properties. Based on XPS analysis and molecular electrostatic potential maps (MEPS), BBST exhibits superior tribology performance due to the interaction between the sulfur (S), nitrogen (N), and π-electrons of the benzene ring with the metal surface. The formation of FeS, Fe2O3 and Fe⋯N coordinate bonds contributes to the creation of an excellent tribofilm.

6.
Bioorg Chem ; 141: 106859, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742494

RESUMO

A bio-assay guided fractionation strategy based on cholinesterase assay combined with 13C NMR-based dereplication was used to identify active metabolites from the bark of Mesua lepidota. Eight compounds were identified with the aid of the 13C NMR-based dereplication software, MixONat, i.e., sitosterol (1), stigmasterol (2), α-amyrin (3), friedelin (6), 3ß-friedelinol (7), betulinic acid (9), lepidotol A (10) and lepidotol B (11). Further bio-assay guided isolation of active compounds afforded one xanthone, pyranojacareubin (12) and six coumarins; lepidotol A (10), lepidotol B (11), lepidotol E (13), lepidotin A (14), and lepidotin B (15), including a new Mammea coumarin, lepidotin C (16). All the metabolites showed strong to moderate butyrylcholinesterase (BChE) inhibition. Lepidotin B (15) exhibited the most potent inhibition towards BChE with a mix-mode inhibition profile and a Ki value of 1.03 µM. Molecular docking and molecular dynamics simulations have revealed that lepidotin B (15) forms stable interactions with key residues within five critical regions of BChE. These regions encompass residues Asp70 and Tyr332, the acyl hydrophobic pocket marked by Leu286, the catalytic triad represented by Ser198 and His438, the oxyanion hole (OH) constituted by Gly116 and Gly117, and the choline binding site featuring Trp82. To gauge the binding strength of lepidotin B (15) and to pinpoint pivotal residues at the binding interface, free energy calculations were conducted using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) approach. This analysis not only predicted a favourable binding affinity for lepidotin B (15) but also facilitated the identification of significant residues crucial for the binding interaction.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Casca de Planta/química , Software , Acetilcolinesterase/metabolismo
7.
Vaccines (Basel) ; 11(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631931

RESUMO

Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.

8.
Biomedicines ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37509531

RESUMO

Leukemia, a condition characterized by the abnormal proliferation of blood cells, poses significant challenges in cancer treatment. Thymoquinone (TQ), a bioactive compound derived from black seed, has demonstrated anticancer properties, including telomerase inhibition and the induction of apoptosis. However, TQ's poor solubility and limited bioavailability hinder its clinical application. This study explored the use of Sulfobutylether-ß-cyclodextrin (SBE-ß-CD), a cyclodextrin derivative, to enhance the solubility and stability of TQ for leukemia treatment. SBE-ß-CD offers low hemolytic activity and has been successfully employed in controlled drug release systems. The study investigated the formation of inclusion complexes between TQ and SBE-ß-CD and evaluated their effects on leukemia cell growth and telomerase activity. The results indicated that the TQ/SBE-ß-CD complex exhibited improved solubility and enhanced cytotoxic effects against K-562 leukemia cells compared to TQ alone, suggesting the potential of SBE-ß-CD as a drug delivery system for TQ. The annexin V-FITC assay demonstrated increased apoptosis, while the qPCR quantification assay revealed reduced telomerase activity in leukemia cells treated with TQ/SBE-ß-CD, supporting its anti-leukemic potential. The molecular docking analysis indicated a strong binding affinity between TQ and telomerase. However, further research is needed to optimize the apoptotic effects and minimize necrosis induction. In conclusion, TQ/SBE-ß-CD shows promise as a novel strategy for leukemia treatment by inhibiting telomerase and enhancing the cytotoxic effects of TQ, offering a potential solution to overcome the limitations of TQ's poor solubility and bioavailability.

9.
Comput Biol Med ; 159: 106869, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071939

RESUMO

In recent years, the PDE1B enzyme has become a desirable drug target for the treatment of psychological and neurological disorders, particularly schizophrenia disorder, due to the expression of PDE1B in brain regions involved in volitional behaviour, learning and memory. Although several inhibitors of PDE1 have been identified using different methods, none of these inhibitors has reached the market yet. Thus, searching for novel PDE1B inhibitors is considered a major scientific challenge. In this study, pharmacophore-based screening, ensemble docking and molecular dynamics simulations have been performed to identify a lead inhibitor of PDE1B with a new chemical scaffold. Five PDE1B crystal structures have been utilised in the docking study to improve the possibility of identifying an active compound compared to the use of a single crystal structure. Finally, the structure-activity- relationship was studied, and the structure of the lead molecule was modified to design novel inhibitors with a high affinity for PDE1B. As a result, two novel compounds have been designed that exhibited a higher affinity to PDE1B compared to the lead compound and the other designed compounds.


Assuntos
Simulação de Dinâmica Molecular , Farmacóforo , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores
10.
Med Chem ; 19(9): 897-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37046198

RESUMO

BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen. OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties. METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z). RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 µM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit. CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proliferação de Células , Células HCT116 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
11.
Heliyon ; 9(1): e12667, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618128

RESUMO

SARS-CoV-2 virus continues to evolve and mutate causing most of the mutated variants resist to many of the therapeutic monoclonal antibodies (mAbs). Despite several mAbs retained neutralizing capability for Omicron BA.1 and BA.2, reduction in neutralization potency was reported. Hence, effort of searching for mAb that is broader in neutralization breadth without losing the neutralizing ability is continued. MW06 was reported with capability in neutralizing most of the variants of concern (VOC) and it binds to the conserved region (left flank) near epitope mAb sotrovimab (S309). In this study, binding affinity of mAb MW06 and its cocktail formulation with MW05 for receptor binding domain (RBD) SARS-CoV-2 virus was investigated under molecular dynamics simulations (MDs). Binding free energies computed by Molecular Mechanics Generalised Born Surface Area (MM-GBSA) algorithm predicted the binding affinity of MW06 for RBD BA.1 (-53 kcal/mol) as strong as RBD wildtype (-58 kcal/mol) while deterioration was observed for RBD BA.2 (-43 kcal/mol). Alike S309 and MW06, simulated cocktail mAb (MW05 and MW06)-RBD interactions suggested the neutralizing capability of the cocktail formulation for RBD BA.1 and BA.2 reduced. Meanwhile, residue pairs that favour the communication between the mAb and RBD have been identified by decomposing the free energy per pairwise residue basis. Apart from understanding the effects of mutation occurred in the RBD region on human angiotensin-converting enzyme 2 (hACE2) binding, impact of heavily mutated RBD on mAb-RBD interactions was investigated in this study as well. In addition to energetic profile obtained from MDs, plotting the dynamics cross-correlation map of the mAb-RBD complex under elastic network model (ENM) was aimed to understand the cross-correlations between residue fluctuations. It allows simple and rapid analysis on the motions or dynamics of the protein residues of mAbs and RBD in complex. Protein residues having correlated motions are normally part of the structural domains of the protein and their respective motions and protein function are related. Motion of mutated RBD residues and mAb residues was less correlated while their respective interactions energy computed to be higher. The combined techniques of MDs and ENM offered simplicity in understanding dynamics and energy contribution that explain binding affinity of mAb-RBD complexes.

12.
Mol Biotechnol ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36633832

RESUMO

The distinctive morphology characteristics of microfold cells (M cells) allow the vaccine antigen not only to interact with immune cells directly, but also to effectively stimulate mucosal immune responses via receptors on its apical surface. Human prion protein, a transmembrane receptor for Brucella abortus Hsp60, is highly expressed on the M cell surface. Nonetheless, this protein tends to express in inclusion body in prokaryotic hosts. In this study, the shorter interacting regions of human prion protein were identified via computational methods such as docking and molecular dynamics simulations to minimize its aggregation tendency. The computational calculations revealed three novel human prion protein-interacting regions, namely PrP125, PrP174, and PrP180. In accordance with in silico prediction, the biologically synthesized peptides fusing with GST tag demonstrated their specific binding to Hsp60 protein via pull-down assay. Hence, this finding laid the groundwork for M-cell targeting candidate validation through these newly identified interacting regions.

13.
Mol Divers ; 27(2): 959-985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35819579

RESUMO

CNS disorders are indications with a very high unmet medical needs, relatively smaller number of available drugs, and a subpar satisfaction level among patients and caregiver. Discovery of CNS drugs is extremely expensive affair with its own unique challenges leading to extremely high attrition rates and low efficiency. With explosion of data in information age, there is hardly any aspect of life that has not been touched by data driven technologies such as artificial intelligence (AI) and machine learning (ML). Drug discovery is no exception, emergence of big data via genomic, proteomic, biological, and chemical technologies has driven pharmaceutical giants to collaborate with AI oriented companies to revolutionise drug discovery, with the goal of increasing the efficiency of the process. In recent years many examples of innovative applications of AI and ML techniques in CNS drug discovery has been reported. Research on therapeutics for diseases such as schizophrenia, Alzheimer's and Parkinsonism has been provided with a new direction and thrust from these developments. AI and ML has been applied to both ligand-based and structure-based drug discovery and design of CNS therapeutics. In this review, we have summarised the general aspects of AI and ML from the perspective of drug discovery followed by a comprehensive coverage of the recent developments in the applications of AI/ML techniques in CNS drug discovery.


Assuntos
Inteligência Artificial , Proteômica , Humanos , Ligantes , Aprendizado de Máquina , Sistema Nervoso Central
14.
PLoS One ; 17(12): e0278216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454774

RESUMO

Phosphodiesterase 1B (PDE1B) and PDE10A are dual-specificity PDEs that hydrolyse both cyclic adenosine monophosphate and cyclic guanosine monophosphate, and are highly expressed in the striatum. Several reports have suggested that PDE10A inhibitors may present a promising approach for the treatment of positive symptoms of schizophrenia, whereas PDE1B inhibitors may present a novel mechanism to modulate cognitive deficits. Previously, we have reported a novel dual inhibitor of PDE1B and PDE10A, compound 2 [(3-fluorophenyl)(2-methyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)methanone] which has shown inhibitory activity for human recombinant PDE1B and PDE10A in vitro. In the present study, the safety profile of compound 2 has been evaluated in rats in the acute oral toxicity study, as well as; the antipsychotic-like effects in the rat model of schizophrenia. Compound 2 was tolerated up to 1 g/kg when administered at a single oral dose. Additionally, compound 2 has strongly suppressed ketamine-induced hyperlocomotion, which presented a model for the positive symptoms of schizophrenia. It has also shown an ability to attenuate social isolation induced by chronic administration of ketamine and enhanced recognition memory of rats ​in the novel object recognition test. Altogether, our results suggest that compound 2 represents a promising therapy for the treatment of the three symptomatic domains of schizophrenia.


Assuntos
Antipsicóticos , Transtornos Cognitivos , Ketamina , Esquizofrenia , Humanos , Animais , Ratos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases
15.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234784

RESUMO

Computational and experimental approaches were adopted to utilize a chromophore diglycolic functionalized fluorescein derivative as a Ca2+ receptor. Fluorescein diglycolic acid (Fl-DGA, 1) was synthesized and used in multivariate determination of Ca2+ and K+. Full-structure computation shows that the complexes of 1 and Ca2+ have comparable energies regardless of additional interaction with lactone moiety. The initial formation of diglycolic-Ca2+ complex followed by macrocyclization is thermodynamically disfavored. A U-shaped pre-organized 1 allows Ca2+ to interact simultaneously with diglycolic and lactone motifs. Both motifs actively participate in Ca2+ recognition and the eleven methylene units in the undecyl arm provides excellent flexibility for reorganization and optimum interaction. Principal component analysis (PCA) of computational molecular properties reveals a simple method in evaluating motifs for cation recognition. Fragment models support full-structure results that negative charge causes significant structural changes, but do not reproduce the full extent of C-O bond breaking observed in the latter. Experimental optical responses show that 1 is selective towards Ca2+ and discriminates against K+ and Mg2+. PCA of emission intensities affords distinct clusters of 0.01, 0.1 and 1 mM Ca2+ and K+, and suggests applicability of this technique for simultaneous determination of cationic plant macronutrients in precision agriculture and a wide variety of other applications.


Assuntos
Cálcio , Receptores de Detecção de Cálcio , Cátions , Fluoresceína , Lactonas
16.
Sci Rep ; 12(1): 12137, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840700

RESUMO

The Musashi (MSI) family of RNA-binding proteins, comprising the two homologs Musashi-1 (MSI1) and Musashi-2 (MSI2), typically regulates translation and is involved in cell proliferation and tumorigenesis. MSI proteins contain two ribonucleoprotein-like RNA-binding domains, RBD1 and RBD2, that bind single-stranded RNA motifs with a central UAG trinucleotide with high affinity and specificity. The finding that MSI also promotes the replication of Zika virus, a neurotropic Flavivirus, has triggered further investigations of the biochemical principles behind MSI-RNA interactions. However, a detailed molecular understanding of the specificity of MSI RBD1/2 interaction with RNA is still missing. Here, we performed computational studies of MSI1-RNA association complexes, investigating different RNA pentamer motifs using molecular dynamics simulations with binding free energy calculations based on the solvated interaction energy method. Simulations with Alphafold2 suggest that predicted MSI protein structures are highly similar to experimentally determined structures. The binding free energies show that two out of four RNA pentamers exhibit a considerably higher binding affinity to MSI1 RBD1 and RBD2, respectively. The obtained structural information on MSI1 RBD1 and RBD2 will be useful for a detailed functional and mechanistic understanding of this type of RNA-protein interactions.


Assuntos
Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Zika virus/genética , Infecção por Zika virus/metabolismo
17.
PLoS One ; 17(7): e0270970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819953

RESUMO

There is an increasing demand in developing new, effective, and affordable anti-cancer against colon and rectal. In this study, our aim is to identify the potential anthraquinone compounds from the root bark of Morinda citrifolia to be tested in vitro against colorectal cancer cell lines. Eight potential anthraquinone compounds were successfully isolated, purified and tested for both in-silico and in-vitro analyses. Based on the in-silico prediction, two anthraquinones, morindone and rubiadin, exhibit a comparable binding affinity towards multitargets of ß-catenin, MDM2-p53 and KRAS. Subsequently, we constructed a 2D interaction analysis based on the above results and it suggests that the predicted anthraquinones from Morinda citrifolia offer an attractive starting point for potential antiproliferative agents against colorectal cancer. In vitro analyses further indicated that morindone and damnacanthal have significant cytotoxicity effect and selectivity activity against colorectal cancer cell lines.


Assuntos
Neoplasias Colorretais , Morinda , Antraquinonas/química , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Morinda/química , Raízes de Plantas/química
18.
PLoS One ; 17(6): e0269563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771802

RESUMO

SARS-CoV-2 causes the current global pandemic coronavirus disease 2019. Widely-available effective drugs could be a critical factor in halting the pandemic. The main protease (3CLpro) plays a vital role in viral replication; therefore, it is of great interest to find inhibitors for this enzyme. We applied the combination of virtual screening based on molecular docking derived from the crystal structure of the peptidomimetic inhibitors (N3, 13b, and 11a), and experimental verification revealed FDA-approved drugs that could inhibit the 3CLpro of SARS-CoV-2. Three drugs were selected using the binding energy criteria and subsequently performed the 3CLpro inhibition by enzyme-based assay. In addition, six common drugs were also chosen to study the 3CLpro inhibition. Among these compounds, lapatinib showed high efficiency of 3CLpro inhibition (IC50 value of 35 ± 1 µM and Ki of 23 ± 1 µM). The binding behavior of lapatinib against 3CLpro was elucidated by molecular dynamics simulations. This drug could well bind with 3CLpro residues in the five subsites S1', S1, S2, S3, and S4. Moreover, lapatinib's key chemical pharmacophore features toward SAR-CoV-2 3CLpro shared important HBD and HBA with potent peptidomimetic inhibitors. The rational design of lapatinib was subsequently carried out using the obtained results. Our discovery provides an effective repurposed drug and its newly designed analogs to inhibit SARS-CoV-2 3CLpro.


Assuntos
Tratamento Farmacológico da COVID-19 , Peptidomiméticos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Humanos , Lapatinib/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
19.
Sci Rep ; 12(1): 7608, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534543

RESUMO

Anti-interferon gamma autoantibodies (anti-IFN-γ autoAbs) neutralize the IFN-γ-mediated functions, contributing to immunodeficiency. A particular autoAb in patient serum had been previously demonstrated to recognize the same determinant on IFN-γ as the neutralizing anti-IFN-γ monoclonal antibody clone B27 (B27 mAb). This study explored the epitope recognized by B27 mAb. The specific peptide sequence recognized by B27 mAb, TDFLRMMLQEER, was retrieved from a phage display random peptide library. Sequence alignment and homology modeling demonstrated that the queried phage peptide sequence and structure were similar to amino acids at position 27-40 (TLFLGILKNWKEES) of the human IFN-γ. This determinant resides in the contact surface of IFN-γ and interferon gamma receptor 1. To elucidate the crucial amino acids, mutations were introduced by substituting T27 and T27F29L30 with alanine or deleting the amino acid residues T27-L33. The binding of B27 mAb to IFN-γ T27A using western blotting was lesser than that to wild-type. The interaction with triple mutant and T27-L33 deletion mutant using western blotting and sandwich ELISA was abolished. The finding demonstrated that T27, F29, and L30 are critical residues in the B27 antigenic determinant. Identification of the functional domain of IFN-γ decrypted the relevance of neutralizing autoAb in adult-onset immunodeficiency.


Assuntos
Síndromes de Imunodeficiência , Interferon gama , Adulto , Aminoácidos , Anticorpos Monoclonais , Autoanticorpos , Epitopos , Humanos , Interferon gama/metabolismo
20.
Sci Rep ; 12(1): 6154, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418130

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer with rapid progression and poor survival. Novel and more effective therapies than those currently available are, therefore, urgently needed. Our research group previously reported the combination of gemcitabine and cytotoxic T lymphocytes to be more effective than single-agent treatment for the elimination of CCA cells. However, gemcitabine treatment of CCA cells upregulates the expression of an immune checkpoint protein (programmed death-ligand 1 [PD-L1]) that consequently inhibits the cytotoxicity of T lymphocytes. To overcome this challenge and take advantage of PD-L1 upregulation upon gemcitabine treatment, we generated recombinant PD-L1xCD3 bispecific T cell engagers (BiTEs) to simultaneously block PD-1/PD-L1 signaling and recruit T lymphocytes to eliminate CCA cells. Two recombinant PD-L1xCD3 BiTEs (mBiTE and sBiTE contain anti-PD-L1 scFv region from atezolizumab and from a published sequence, respectively) were able to specifically bind to both CD3 on T lymphocytes, and to PD-L1 overexpressed after gemcitabine treatment on CCA (KKU213A, KKU055, and KKU100) cells. mBiTE and sBiTE significantly enhanced T lymphocyte cytotoxicity against CCA cells, especially after gemcitabine treatment, and their magnitudes of cytotoxicity were positively associated with the levels of PD-L1 expression. Our findings suggest combination gemcitabine and PD-L1xCD3 BiTE as a potential alternative therapy for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Linfócitos T Citotóxicos , Antígeno B7-H1/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Complexo CD3 , Colangiocarcinoma/patologia , Desoxicitidina/análogos & derivados , Humanos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...